On the photodetachment from the green fluorescent protein chromophore.

نویسندگان

  • Ksenia B Bravaya
  • Anna I Krylov
چکیده

Motivated by the discrepancies in recent experimental and theoretical studies of photodetachment from isolated model chromophores of the green fluorescent protein (GFP), this study reports calculations of the electron detachment energies and photoelectron spectra of the phenolate and deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) anions. The spectra were computed using double-harmonic parallel normal mode approximation. High-level coupled-cluster methods as well as density functional theory were used to compute vertical and adiabatic detachment energies of the phenolate anion serving as a model system representing anionic GFP-like chromophores (HBDI). The benchmark calculations reveal that the basis set has significant effect on the computed detachment energies, whereas the results are less sensitive to the level of electron correlation treatment. At least aug-cc-pVTZ basis set is required. The best ωB97X-D and CCSD(T) estimates of phenolate's adiabatic detachment energy are 2.12 and 2.19 eV; these values are very close to the experimental value, 2.253 eV [Gunion et al. Int. J. Mass Spectrom. Ion Proc. 1992, 117, 601]. The best estimate of the vertical detachment energy of deprotonated HBDI is 2.76 eV, which supports bound character of the bright excited state in the Franck-Condon region. The most intense transition in the computed photoelectron spectra of both phenolate and deprotonated HBDI is the 0-0 S0-D0 transition, which is 0.11 eV below vertical detachment energy. Therefore, the position of the maximum of the photoelectron spectrum does not represent vertical detachment energy, and the direct comparison between theory and experiment must involve spectrum modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore. 1. Electronically Excited and Ionized States of the Anionic Chromophore in the Gas Phase.

We present the results of quantum chemical calculations of the electronic properties of the anionic form of the green fluorescent protein chromophore in the gas phase. The vertical detachment energy of the chromophore is found to be 2.4-2.5 eV, which is below the strongly absorbing ππ* state at 2.6 eV. The vertical excitation of the lowest triplet state is around 1.9 eV, which is below the phot...

متن کامل

Competition between photodetachment and autodetachment of the 2(1)ππ* state of the green fluorescent protein chromophore anion.

Using a combination of photoelectron spectroscopy measurements and quantum chemistry calculations, we have identified competing electron emission processes that contribute to the 350-315 nm photoelectron spectra of the deprotonated green fluorescent protein chromophore anion, p-hydroxybenzylidene-2,3-dimethylimidazolinone. As well as direct electron detachment from S0, we observe resonant excit...

متن کامل

Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics.

The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry ...

متن کامل

Chromophore formation in green fluorescent protein.

The green fluorescent protein (GFP) from the jellyfish Aequorea Victoria forms an intrinsic chromophore through cyclization and oxidation of an internal tripeptide motif [Prasher, D. C., et al. (1992) Gene 111, 229-233; Cody, C. E., et al. (1993) Biochemistry 32, 1212-1218]. We monitored the formation of the chromophore in vitro using the S65T-GFP chromophore mutant. S65T-GFP recovered from inc...

متن کامل

Photophysics and Dihedral Freedom of the Chromophore in Yellow, Blue, and Green Fluorescent Protein

Green fluorescent protein (GFP) and GFP-like fluorescent proteins owe their photophysical properties to an autocatalytically formed intrinsic chromophore. According to quantum mechanical calculations, the excited state of chromophore model systems has significant dihedral freedom, which may lead to fluorescence quenching intersystem crossing. Molecular dynamics simulations with freely rotating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 117 46  شماره 

صفحات  -

تاریخ انتشار 2013